Incorporation of fungal cellulases in bacterial minicellulosomes yields viable, synergistically acting cellulolytic complexes.
نویسندگان
چکیده
Artificial designer minicellulosomes comprise a chimeric scaffoldin that displays an optional cellulose-binding module (CBM) and bacterial cohesins from divergent species which bind strongly to enzymes engineered to bear complementary dockerins. Incorporation of cellulosomal cellulases from Clostridium cellulolyticum into minicellulosomes leads to artificial complexes with enhanced activity on crystalline cellulose, due to enzyme proximity and substrate targeting induced by the scaffoldin-borne CBM. In the present study, a bacterial dockerin was appended to the family 6 fungal cellulase Cel6A, produced by Neocallimastix patriciarum, for subsequent incorporation into minicellulosomes in combination with various cellulosomal cellulases from C. cellulolyticum. The binding of the fungal Cel6A with a bacterial family 5 endoglucanase onto chimeric miniscaffoldins had no impact on their activity toward crystalline cellulose. Replacement of the bacterial family 5 enzyme with homologous endoglucanase Cel5D from N. patriciarum bearing a clostridial dockerin gave similar results. In contrast, enzyme pairs comprising the fungal Cel6A and bacterial family 9 endoglucanases were substantially stimulated (up to 2.6-fold) by complexation on chimeric scaffoldins, compared to the free-enzyme system. Incorporation of enzyme pairs including Cel6A and a processive bacterial cellulase generally induced lower stimulation levels. Enhanced activity on crystalline cellulose appeared to result from either proximity or CBM effects alone but never from both simultaneously, unlike minicellulosomes composed exclusively of bacterial cellulases. The present study is the first demonstration that viable designer minicellulosomes can be produced that include (i) free (noncellulosomal) enzymes, (ii) fungal enzymes combined with bacterial enzymes, and (iii) a type (family 6) of cellulase never known to occur in natural cellulosomes.
منابع مشابه
Engineering microbial surfaces to degrade lignocellulosic biomass
Renewable lignocellulosic plant biomass is a promising feedstock from which to produce biofuels, chemicals, and materials. One approach to cost-effectively exploit this resource is to use consolidating bioprocessing (CBP) microbes that directly convert lignocellulose into valuable end products. Because many promising CBP-enabling microbes are non-cellulolytic, recent work has sought to engineer...
متن کاملSynergistic effects of cellulosomal xylanase and cellulases from Clostridium cellulovorans on plant cell wall degradation.
Plant cell walls are comprised of cellulose and hemicellulose and other polymers that are intertwined, and this complex structure presents a barrier to degradation by pure cellulases or hemicellulases. In this study, we determined the synergistic effects on corn cell wall degradation by the action of cellulosomal xylanase XynA and cellulosomal cellulases from Clostridium cellulovorans. XynA min...
متن کاملCellulases: ambiguous nonhomologous enzymes in a genomic perspective.
The key material for bioethanol production is cellulose, which is one of the main components of the plant cell wall. Enzymatic depolymerization of cellulose is an essential step in bioethanol production, and can be accomplished by fungal and bacterial cellulases. Most of the biochemically characterized bacterial cellulases come from only a few cellulose-degrading bacteria, thus limiting our kno...
متن کاملCellulases of Bacterial Origin and their Applications: A Review
The cellulosic biomass in the form of agricultural waste, is a renewable and abundant resource with great potential for bioconversion to value-added bioproducts . It can be degraded by cellulase produced by cellulolytic bacteria to more useful products, such as single-cell protein for use in animal feeds or ethanol for use as a fuel or chemical feedstock.. This enzyme has various industrial app...
متن کاملDraft Genome Sequence of Bacillus pumilus ku-bf1 Isolated from the Gut Contents of Wood Boring Mesomorphus sp.
The threat of climate change has intensified efforts toward the development of safer alternatives to depleting fossil fuels (Cox et al., 2000). Lignocellulosic bioethanol is considered to be a viable and environmentally friendly alternative to fossil fuels. Though lignocellulosic biomass is available in massive quantities and is renewable (Dillon and Dillon, 2003; Lynd et al., 2008; Pauly and K...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 73 12 شماره
صفحات -
تاریخ انتشار 2007